A note on the locating-total domination in graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on the locating-total domination in trees

A total dominating set of a graph G = (V,E) with no isolated vertex is a set D ⊆ V (G) such that every vertex is adjacent to a vertex in D. A total dominating set D of G is a locating-total dominating set if for every pair of distinct vertices u and v in V −D, N(u) ∩D = N(v) ∩D. Let γ L(G) be the minimum cardinality of a locating-total dominating set of G. We show that for a nontrivial tree T o...

متن کامل

Locating-total domination critical graphs

A locating-total dominating set of a graph G = (V (G), E(G)) with no isolated vertex is a set S ⊆ V (G) such that every vertex of V (G) is adjacent to a vertex of S and for every pair of distinct vertices u and v in V (G) − S, N(u) ∩ S = N(v) ∩ S. Let γ t (G) be the minimum cardinality of a locating-total dominating set of G. A graph G is said to be locating-total domination vertex critical if ...

متن کامل

A Note on Total Domination Critical Graphs

The total domination number of G denoted by γt(G) is the minimum cardinality of a total dominating set of G. A graph G is total domination vertex critical or just γt-critical, if for any vertex v of G that is not adjacent to a vertex of degree one, γt(G − v) < γt(G). If G is γt-critical and γt(G) = k, then G is k-γt-critical. Haynes et al [The diameter of total domination vertex critical graphs...

متن کامل

Locating -Total Domination in Circulant Graphs

A locating-total dominating set (LTDS) S of a graph G is a total dominating set S of G such that for every two vertices u and v in V(G) − S, N(u)∩S ≠ N(v)∩S. The locating-total domination number ( ) l t G  is the minimum cardinality of a LTDS of G. A LTDS of cardinality ( ) l t G  we call a ( ) l t G  -set. In this paper, we determine the locating-total domination number for the special clas...

متن کامل

On locating-domination in graphs

A set D of vertices in a graph G = (V, E) is a locating-dominating set (LDS) if for every two vertices u, v of V − D the sets N(u) ∩ D and N(v) ∩ D are non-empty and different. The locating-domination number γL(G) is the minimum cardinality of a LDS of G, and the upper locating-domination number, ΓL(G) is the maximum cardinality of a minimal LDS of G. We present different bounds on ΓL(G) and γL...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discussiones Mathematicae Graph Theory

سال: 2017

ISSN: 1234-3099,2083-5892

DOI: 10.7151/dmgt.1961